AI聊AI2026.3.25---危機公關危機控管創建設計AI Agent (人工智慧代理人)程式碼範例
Q:危機公關危機控管創建設計AI Agent (人工智慧代理人)程式碼範例
AI:
設計一個用於危機公關和危機管理的人工智慧代理涉及多個組件。由於需要大量的訓練資料、複雜的自然語言處理 (NLP) 模型以及與各種平台的集成,直接提供如此複雜系統的完整可執行程式碼超出了單一響應的範圍,因此我將提供一個概念設計,其中包含關鍵模組的偽代碼範例。這將概述所涉及的架構和邏輯。
危機公關與管理人工智慧代理:概念設計
這個人工智慧代理將充當智慧助手,監測公眾情緒,識別潛在危機,起草溝通內容並提出策略。
核心模組:
資料擷取與監控:收集即時資訊。
危機檢測與分類:識別和分類潛在或正在發生的危機。
情緒分析:衡量公眾情緒和看法。
回應生成和建議:起草溝通並提出行動建議。
學習與適應:根據回饋和新數據隨著時間的推移而改善。
關鍵模組的偽代碼範例
讓我們用偽代碼分解每個模組來說明邏輯。
1. 資料擷取與監控模組
該模組不斷從各種來源提取資料。
Python
# Pseudocode for Data Ingestion & Monitoring
CLASS DataMonitor:
METHOD __init__(self, sources_config):
self.sources = sources_config # e.g., social media APIs, news feeds, internal communication channels
self.data_stream = []
METHOD connect_to_sources(self):
FOR source IN self.sources:
TRY:
# Establish API connections or RSS feed subscriptions
LOG(f"Connected to {source.name}")
EXCEPT EXCEPTION AS e:
ERROR(f"Failed to connect to {source.name}: {e}")
METHOD collect_data(self):
WHILE TRUE: # Continuous monitoring
FOR source IN self.sources:
new_data = source.fetch_latest_data() # API calls, web scraping, etc.
self.data_stream.extend(new_data)
SLEEP(time_interval) # e.g., 5 minutes
METHOD preprocess_data(self, raw_data):
# Clean and normalize text, remove duplicates, handle emojis
processed_data = []
FOR item IN raw_data:
cleaned_text = item.text.lower().strip()
# Remove URLs, hashtags, mentions (or extract them for analysis)
# Tokenization and stop-word removal might happen here or in NLP module
processed_data.append({'id': item.id, 'text': cleaned_text, 'timestamp': item.timestamp, 'source': item.source})
RETURN processed_data
# Example Usage:
# monitor = DataMonitor(config.DATA_SOURCES)
# monitor.connect_to_sources()
# raw_data = monitor.collect_data()
# processed_data = monitor.preprocess_data(raw_data)
2.危機檢測與分類模組
本模組使用 NLP 和機器學習來識別和分類危機。
Python
# Pseudocode for Crisis Detection & Classification
CLASS CrisisDetector:
METHOD __init__(self, model_path="crisis_detection_model.pkl"):
# Load a pre-trained machine learning model (e.g., Logistic Regression, SVM, or a deep learning model like BERT for text classification)
# This model would be trained on a dataset of crisis vs. non-crisis texts, categorized by crisis type.
self.model = LOAD_MODEL(model_path)
self.crisis_keywords = LOAD_KEYWORDS("crisis_keywords.json") # Keywords for initial filtering
METHOD detect_crisis(self, text_data):
potential_crises = []
FOR item IN text_data:
is_crisis = FALSE
# Initial keyword-based filtering (can be combined with ML for robustness)
FOR keyword IN self.crisis_keywords:
IF keyword IN item.text:
is_crisis = TRUE
BREAK
IF is_crisis:
# Use the trained ML model for more accurate classification
features = self.featurize_text(item.text) # Convert text to numerical features (e.g., TF-IDF, word embeddings)
prediction = self.model.predict(features)
IF prediction == "crisis":
crisis_type = self.model.predict_type(features) # Predict specific crisis type (e.g., product recall, PR gaffe, disaster)
potential_crises.append({
'id': item.id,
'text': item.text,
'timestamp': item.timestamp,
'source': item.source,
'is_crisis': TRUE,
'crisis_type': crisis_type,
'confidence': self.model.predict_proba(features) # Model confidence
})
RETURN potential_crises
METHOD featurize_text(self, text):
# Placeholder for text vectorization (e.g., TF-IDF Vectorizer, Word2Vec, BERT embeddings)
RETURN TEXT_TO_NUMERICAL_FEATURES(text)
# Example Usage:
# detector = CrisisDetector()
# crisis_alerts = detector.detect_crisis(processed_data)
# FOR alert IN crisis_alerts:
# IF alert.confidence > THRESHOLD:
# ALERT_CRISIS_TEAM(alert)
3.情緒分析模組
本模組衡量公眾的情緒反應。
Python
# Pseudocode for Sentiment Analysis
CLASS SentimentAnalyzer:
METHOD __init__(self, model_path="sentiment_model.pkl"):
# Load a pre-trained sentiment analysis model (e.g., VADER for rule-based, or a deep learning model fine-tuned for sentiment)
self.model = LOAD_MODEL(model_path)
METHOD analyze_sentiment(self, text_data):
sentiment_scores = []
FOR item IN text_data:
features = self.featurize_text(item.text) # Same featurization as crisis detection or specific for sentiment
sentiment = self.model.predict(features) # e.g., 'positive', 'negative', 'neutral'
polarity_score = self.model.predict_polarity_score(features) # e.g., -1.0 to 1.0
sentiment_scores.append({
'id': item.id,
'text': item.text,
'sentiment': sentiment,
'polarity_score': polarity_score
})
RETURN sentiment_scores
METHOD featurize_text(self, text):
# Placeholder for text vectorization
RETURN TEXT_TO_NUMERICAL_FEATURES(text)
# Example Usage:
# analyzer = SentimentAnalyzer()
# sentiments = analyzer.analyze_sentiment(crisis_alerts)
# FOR sentiment_data IN sentiments:
# IF sentiment_data.polarity_score < NEGATIVE_SENTIMENT_THRESHOLD:
# FLAG_FOR_URGENT_REVIEW(sentiment_data)
4. 響應生成與推薦模組
本模組負責起草回應並提出行動建議。這是最複雜的部分,可能需要高階的自然語言處理(例如大型語言模型)。
Python
# Pseudocode for Response Generation & Recommendation
CLASS ResponseGenerator:
METHOD __init__(self, llm_model_name="openai_gpt_4", knowledge_base_path="pr_guidelines.json"):
# Initialize a powerful Large Language Model (LLM) for text generation
self.llm = LLM_API_CALL(llm_model_name)
# Load internal PR guidelines, past successful responses, legal disclaimers
self.knowledge_base = LOAD_JSON(knowledge_base_path)
METHOD generate_response_draft(self, crisis_details, sentiment_data, audience_info):
prompt = self.craft_prompt(crisis_details, sentiment_data, audience_info)
# Use LLM to generate initial draft
generated_text = self.llm.generate_text(prompt, max_tokens=500, temperature=0.7)
# Post-processing: ensure tone, check for sensitive info, integrate placeholders
final_draft = self.post_process_draft(generated_text, crisis_details.get('crisis_type'))
RETURN final_draft
METHOD craft_prompt(self, crisis_details, sentiment_data, audience_info):
# Dynamically build a detailed prompt for the LLM
prompt_parts = [
f"Role: You are a crisis public relations expert.",
f"Task: Draft a public statement or internal communication for a {crisis_details.get('crisis_type')} crisis.",
f"Crisis Summary: {crisis_details.get('text')}",
f"Public Sentiment: The general sentiment is {sentiment_data.get('sentiment')} with a polarity score of {sentiment_data.get('polarity_score')}.",
f"Audience: {audience_info.get('type')} (e.g., general public, employees, investors).",
"Key information to include (from crisis_details): [Relevant facts, actions taken, commitment to resolution].",
f"Internal PR Guidelines to consider: {self.knowledge_base.get('general_guidelines')}",
"Tone: [e.g., empathetic, reassuring, authoritative, transparent].",
"Call to action (if any): [e.g., check website, contact support]."
]
RETURN "\n".join(prompt_parts)
METHOD post_process_draft(self, draft, crisis_type):
# Review and refine the LLM's output
# 1. Check for factual accuracy (requires integration with a fact-checking module or human oversight)
# 2. Ensure brand voice and tone consistency
# 3. Add boilerplate disclaimers or legal statements based on crisis_type
# 4. Suggest placeholders for specific names, dates, or contact info
refined_draft = draft.replace("[COMPANY_NAME]", "Your Company Inc.")
# Add a placeholder for review
refined_draft += "\n\n[NOTE: This is an AI-generated draft. Please review and customize before publishing.]"
RETURN refined_draft
METHOD recommend_actions(self, crisis_details, sentiment_data):
actions = []
# Logic based on crisis type, severity, and sentiment
IF crisis_details.get('crisis_type') == "product_recall" AND sentiment_data.get('polarity_score') < -0.5:
actions.append("Issue immediate public apology.")
actions.append("Initiate recall protocol if not already started.")
actions.append("Prepare FAQ document for customer service.")
actions.append("Monitor social media for specific customer complaints.")
ELIF crisis_details.get('crisis_type') == "data_breach":
actions.append("Notify affected users as per regulations.")
actions.append("Engage cybersecurity forensics team.")
actions.append("Provide identity theft protection resources.")
# Add more rules and lookup from knowledge base
RETURN actions
# Example Usage:
# generator = ResponseGenerator()
# crisis_summary = {'crisis_type': 'product_issue', 'text': 'Our latest gadget is overheating.'}
# current_sentiment = {'sentiment': 'negative', 'polarity_score': -0.7}
# audience = {'type': 'general public'}
# draft_response = generator.generate_response_draft(crisis_summary, current_sentiment, audience)
# recommended_actions = generator.recommend_actions(crisis_summary, current_sentiment)
# PRINT("Draft Response:\n", draft_response)
# PRINT("Recommended Actions:\n", recommended_actions)
5. 學習與適應模組
此模組確保代理程式隨著時間的推移而改進。
Python
# Pseudocode for Learning & Adaptation
CLASS LearningModule:
METHOD __init__(self, feedback_db_path="feedback.db"):
self.feedback_db = LOAD_DATABASE(feedback_db_path) # Database to store human feedback and outcomes
METHOD incorporate_feedback(self, generated_output, human_correction, outcome):
# Store feedback for future model retraining
self.feedback_db.save({
'generated_output': generated_output,
'human_correction': human_correction,
'outcome': outcome, # e.g., 'successful', 'needs_improvement', 'failed'
'timestamp': CURRENT_TIMESTAMP()
})
METHOD retrain_models(self):
# Periodically retrain the Crisis Detection, Sentiment, and potentially Response Generation models
# This requires a large enough dataset of annotated data and human-corrected responses.
# This would be an offline, computationally intensive process.
IF self.feedback_db.has_sufficient_new_data():
new_training_data = self.feedback_db.fetch_unprocessed_feedback()
# For Crisis Detection/Sentiment: Re-label data with corrections, retrain classifier
# For Response Generation: Fine-tune LLM on pairs of generated_output and human_correction
# Placeholder for actual retraining logic
LOG("Starting model retraining...")
NEW_CRISIS_MODEL = TRAIN_CRISIS_MODEL(new_training_data)
NEW_SENTIMENT_MODEL = TRAIN_SENTIMENT_MODEL(new_training_data)
# Potentially fine-tune LLM for response generation
self.update_production_models(NEW_CRISIS_MODEL, NEW_SENTIMENT_MODEL)
self.feedback_db.mark_as_processed(new_training_data)
LOG("Models retrained and updated.")
ELSE:
LOG("Not enough new data for retraining.")
METHOD update_production_models(self, new_crisis_model, new_sentiment_model):
# Deploy the newly trained models
SAVE_MODEL(new_crisis_model, "crisis_detection_model.pkl")
SAVE_MODEL(new_sentiment_model, "sentiment_model.pkl")
# Update LLM weights or reference new fine-tuned LLM if applicable
# Example Usage:
# learning_module = LearningModule()
# # After a human reviews a draft:
# learning_module.incorporate_feedback(draft_response, edited_response_by_human, 'successful')
# # Periodically run:
# learning_module.retrain_models()
總體架構流程
資料擷取和監控不斷從各種來源收集資料。
處理後的資料輸入到危機偵測模組。
如果偵測到危機,其詳細資訊將被傳遞給情緒分析模組。
然後,危機詳情和情緒分數被發送到回應生成和推薦模組。
此模組會產生一份草稿回應並提出行動建議,然後提交給人類公關專業人員。
人類對所產生的反應和採取的行動的回饋被回饋到學習和適應模組,以提高未來的表現。
現實世界人工智慧代理的關鍵考慮因素:
資料隱私與安全:處理敏感資訊需要強而有力的安全措施。
人機互動:人工智慧應該協助,而不是取代。人類的監督對於準確性、細微差別和最終決策至關重要,尤其是在高風險的公關領域。
道德人工智慧:確保公平、避免回應偏見以及營運透明。
可擴展性:系統必須處理大量資料和請求。
整合:與現有通訊平台(電子郵件、社群媒體管理工具、內部儀表板)無縫整合。
訓練資料:獲取或產生用於危機偵測和情緒分析的高品質、標籤的資料集至關重要。對法學碩士 (LLM) 進行微調需要大量特定領域的文本。
運算資源:運行高階 NLP 模型和大型語言模型需要強大的運算能力。
此概念設計和偽代碼為建構用於危機公關和危機管理的AI代理提供了一個強大的框架。需要注意的是,實際實施將涉及大量的工程工作以及AI/ML、NLP和軟體開發方面的專業知識。
沒有留言:
張貼留言