2025年6月25日 星期三

AI聊AI2026.3.25---危機公關危機控管創建設計AI Agent (人工智慧代理人)程式碼範例

 AI聊AI2026.3.25---危機公關危機控管創建設計AI Agent (人工智慧代理人)程式碼範例





Q:危機公關危機控管創建設計AI Agent (人工智慧代理人)程式碼範例

AI:


設計一個用於危機公關和危機管理的人工智慧代理涉及多個組件。由於需要大量的訓練資料、複雜的自然語言處理 (NLP) 模型以及與各種平台的集成,直接提供如此複雜系統的完整可執行程式碼超出了單一響應的範圍,因此我將提供一個概念設計,其中包含關鍵模組的偽代碼範例。這將概述所涉及的架構和邏輯。


危機公關與管理人工智慧代理:概念設計

這個人工智慧代理將充當智慧助手,監測公眾情緒,識別潛在危機,起草溝通內容並提出策略。

核心模組:

資料擷取與監控:收集即時資訊。

危機檢測與分類:識別和分類潛在或正在發生的危機。

情緒分析:衡量公眾情緒和看法。

回應生成和建議:起草溝通並提出行動建議。

學習與適應:根據回饋和新數據隨著時間的推移而改善。


關鍵模組的偽代碼範例

讓我們用偽代碼分解每個模組來說明邏輯。


1. 資料擷取與監控模組

該模組不斷從各種來源提取資料。


Python


# Pseudocode for Data Ingestion & Monitoring


CLASS DataMonitor:

    METHOD __init__(self, sources_config):

        self.sources = sources_config # e.g., social media APIs, news feeds, internal communication channels

        self.data_stream = []


    METHOD connect_to_sources(self):

        FOR source IN self.sources:

            TRY:

                # Establish API connections or RSS feed subscriptions

                LOG(f"Connected to {source.name}")

            EXCEPT EXCEPTION AS e:

                ERROR(f"Failed to connect to {source.name}: {e}")


    METHOD collect_data(self):

        WHILE TRUE: # Continuous monitoring

            FOR source IN self.sources:

                new_data = source.fetch_latest_data() # API calls, web scraping, etc.

                self.data_stream.extend(new_data)

            SLEEP(time_interval) # e.g., 5 minutes


    METHOD preprocess_data(self, raw_data):

        # Clean and normalize text, remove duplicates, handle emojis

        processed_data = []

        FOR item IN raw_data:

            cleaned_text = item.text.lower().strip()

            # Remove URLs, hashtags, mentions (or extract them for analysis)

            # Tokenization and stop-word removal might happen here or in NLP module

            processed_data.append({'id': item.id, 'text': cleaned_text, 'timestamp': item.timestamp, 'source': item.source})

        RETURN processed_data


# Example Usage:

# monitor = DataMonitor(config.DATA_SOURCES)

# monitor.connect_to_sources()

# raw_data = monitor.collect_data()

# processed_data = monitor.preprocess_data(raw_data)


2.危機檢測與分類模組

本模組使用 NLP 和機器學習來識別和分類危機。


Python


# Pseudocode for Crisis Detection & Classification


CLASS CrisisDetector:

    METHOD __init__(self, model_path="crisis_detection_model.pkl"):

        # Load a pre-trained machine learning model (e.g., Logistic Regression, SVM, or a deep learning model like BERT for text classification)

        # This model would be trained on a dataset of crisis vs. non-crisis texts, categorized by crisis type.

        self.model = LOAD_MODEL(model_path)

        self.crisis_keywords = LOAD_KEYWORDS("crisis_keywords.json") # Keywords for initial filtering


    METHOD detect_crisis(self, text_data):

        potential_crises = []

        FOR item IN text_data:

            is_crisis = FALSE

            # Initial keyword-based filtering (can be combined with ML for robustness)

            FOR keyword IN self.crisis_keywords:

                IF keyword IN item.text:

                    is_crisis = TRUE

                    BREAK

            

            IF is_crisis:

                # Use the trained ML model for more accurate classification

                features = self.featurize_text(item.text) # Convert text to numerical features (e.g., TF-IDF, word embeddings)

                prediction = self.model.predict(features)

                

                IF prediction == "crisis":

                    crisis_type = self.model.predict_type(features) # Predict specific crisis type (e.g., product recall, PR gaffe, disaster)

                    potential_crises.append({

                        'id': item.id,

                        'text': item.text,

                        'timestamp': item.timestamp,

                        'source': item.source,

                        'is_crisis': TRUE,

                        'crisis_type': crisis_type,

                        'confidence': self.model.predict_proba(features) # Model confidence

                    })

        RETURN potential_crises


    METHOD featurize_text(self, text):

        # Placeholder for text vectorization (e.g., TF-IDF Vectorizer, Word2Vec, BERT embeddings)

        RETURN TEXT_TO_NUMERICAL_FEATURES(text)


# Example Usage:

# detector = CrisisDetector()

# crisis_alerts = detector.detect_crisis(processed_data)

# FOR alert IN crisis_alerts:

#     IF alert.confidence > THRESHOLD:

#         ALERT_CRISIS_TEAM(alert)


3.情緒分析模組

本模組衡量公眾的情緒反應。


Python


# Pseudocode for Sentiment Analysis


CLASS SentimentAnalyzer:

    METHOD __init__(self, model_path="sentiment_model.pkl"):

        # Load a pre-trained sentiment analysis model (e.g., VADER for rule-based, or a deep learning model fine-tuned for sentiment)

        self.model = LOAD_MODEL(model_path)


    METHOD analyze_sentiment(self, text_data):

        sentiment_scores = []

        FOR item IN text_data:

            features = self.featurize_text(item.text) # Same featurization as crisis detection or specific for sentiment

            sentiment = self.model.predict(features) # e.g., 'positive', 'negative', 'neutral'

            polarity_score = self.model.predict_polarity_score(features) # e.g., -1.0 to 1.0

            

            sentiment_scores.append({

                'id': item.id,

                'text': item.text,

                'sentiment': sentiment,

                'polarity_score': polarity_score

            })

        RETURN sentiment_scores


    METHOD featurize_text(self, text):

        # Placeholder for text vectorization

        RETURN TEXT_TO_NUMERICAL_FEATURES(text)


# Example Usage:

# analyzer = SentimentAnalyzer()

# sentiments = analyzer.analyze_sentiment(crisis_alerts)

# FOR sentiment_data IN sentiments:

#     IF sentiment_data.polarity_score < NEGATIVE_SENTIMENT_THRESHOLD:

#         FLAG_FOR_URGENT_REVIEW(sentiment_data)

4. 響應生成與推薦模組

本模組負責起草回應並提出行動建議。這是最複雜的部分,可能需要高階的自然語言處理(例如大型語言模型)。


Python


# Pseudocode for Response Generation & Recommendation


CLASS ResponseGenerator:

    METHOD __init__(self, llm_model_name="openai_gpt_4", knowledge_base_path="pr_guidelines.json"):

        # Initialize a powerful Large Language Model (LLM) for text generation

        self.llm = LLM_API_CALL(llm_model_name)

        # Load internal PR guidelines, past successful responses, legal disclaimers

        self.knowledge_base = LOAD_JSON(knowledge_base_path)


    METHOD generate_response_draft(self, crisis_details, sentiment_data, audience_info):

        prompt = self.craft_prompt(crisis_details, sentiment_data, audience_info)

        

        # Use LLM to generate initial draft

        generated_text = self.llm.generate_text(prompt, max_tokens=500, temperature=0.7)

        

        # Post-processing: ensure tone, check for sensitive info, integrate placeholders

        final_draft = self.post_process_draft(generated_text, crisis_details.get('crisis_type'))

        

        RETURN final_draft


    METHOD craft_prompt(self, crisis_details, sentiment_data, audience_info):

        # Dynamically build a detailed prompt for the LLM

        prompt_parts = [

            f"Role: You are a crisis public relations expert.",

            f"Task: Draft a public statement or internal communication for a {crisis_details.get('crisis_type')} crisis.",

            f"Crisis Summary: {crisis_details.get('text')}",

            f"Public Sentiment: The general sentiment is {sentiment_data.get('sentiment')} with a polarity score of {sentiment_data.get('polarity_score')}.",

            f"Audience: {audience_info.get('type')} (e.g., general public, employees, investors).",

            "Key information to include (from crisis_details): [Relevant facts, actions taken, commitment to resolution].",

            f"Internal PR Guidelines to consider: {self.knowledge_base.get('general_guidelines')}",

            "Tone: [e.g., empathetic, reassuring, authoritative, transparent].",

            "Call to action (if any): [e.g., check website, contact support]."

        ]

        RETURN "\n".join(prompt_parts)


    METHOD post_process_draft(self, draft, crisis_type):

        # Review and refine the LLM's output

        # 1. Check for factual accuracy (requires integration with a fact-checking module or human oversight)

        # 2. Ensure brand voice and tone consistency

        # 3. Add boilerplate disclaimers or legal statements based on crisis_type

        # 4. Suggest placeholders for specific names, dates, or contact info

        refined_draft = draft.replace("[COMPANY_NAME]", "Your Company Inc.")

        # Add a placeholder for review

        refined_draft += "\n\n[NOTE: This is an AI-generated draft. Please review and customize before publishing.]"

        RETURN refined_draft


    METHOD recommend_actions(self, crisis_details, sentiment_data):

        actions = []

        # Logic based on crisis type, severity, and sentiment

        IF crisis_details.get('crisis_type') == "product_recall" AND sentiment_data.get('polarity_score') < -0.5:

            actions.append("Issue immediate public apology.")

            actions.append("Initiate recall protocol if not already started.")

            actions.append("Prepare FAQ document for customer service.")

            actions.append("Monitor social media for specific customer complaints.")

        ELIF crisis_details.get('crisis_type') == "data_breach":

            actions.append("Notify affected users as per regulations.")

            actions.append("Engage cybersecurity forensics team.")

            actions.append("Provide identity theft protection resources.")

        # Add more rules and lookup from knowledge base

        RETURN actions


# Example Usage:

# generator = ResponseGenerator()

# crisis_summary = {'crisis_type': 'product_issue', 'text': 'Our latest gadget is overheating.'}

# current_sentiment = {'sentiment': 'negative', 'polarity_score': -0.7}

# audience = {'type': 'general public'}

# draft_response = generator.generate_response_draft(crisis_summary, current_sentiment, audience)

# recommended_actions = generator.recommend_actions(crisis_summary, current_sentiment)

# PRINT("Draft Response:\n", draft_response)

# PRINT("Recommended Actions:\n", recommended_actions)

5. 學習與適應模組

此模組確保代理程式隨著時間的推移而改進。


Python


# Pseudocode for Learning & Adaptation


CLASS LearningModule:

    METHOD __init__(self, feedback_db_path="feedback.db"):

        self.feedback_db = LOAD_DATABASE(feedback_db_path) # Database to store human feedback and outcomes


    METHOD incorporate_feedback(self, generated_output, human_correction, outcome):

        # Store feedback for future model retraining

        self.feedback_db.save({

            'generated_output': generated_output,

            'human_correction': human_correction,

            'outcome': outcome, # e.g., 'successful', 'needs_improvement', 'failed'

            'timestamp': CURRENT_TIMESTAMP()

        })


    METHOD retrain_models(self):

        # Periodically retrain the Crisis Detection, Sentiment, and potentially Response Generation models

        # This requires a large enough dataset of annotated data and human-corrected responses.

        # This would be an offline, computationally intensive process.

        IF self.feedback_db.has_sufficient_new_data():

            new_training_data = self.feedback_db.fetch_unprocessed_feedback()

            

            # For Crisis Detection/Sentiment: Re-label data with corrections, retrain classifier

            # For Response Generation: Fine-tune LLM on pairs of generated_output and human_correction

            

            # Placeholder for actual retraining logic

            LOG("Starting model retraining...")

            NEW_CRISIS_MODEL = TRAIN_CRISIS_MODEL(new_training_data)

            NEW_SENTIMENT_MODEL = TRAIN_SENTIMENT_MODEL(new_training_data)

            # Potentially fine-tune LLM for response generation

            

            self.update_production_models(NEW_CRISIS_MODEL, NEW_SENTIMENT_MODEL)

            self.feedback_db.mark_as_processed(new_training_data)

            LOG("Models retrained and updated.")

        ELSE:

            LOG("Not enough new data for retraining.")


    METHOD update_production_models(self, new_crisis_model, new_sentiment_model):

        # Deploy the newly trained models

        SAVE_MODEL(new_crisis_model, "crisis_detection_model.pkl")

        SAVE_MODEL(new_sentiment_model, "sentiment_model.pkl")

        # Update LLM weights or reference new fine-tuned LLM if applicable


# Example Usage:

# learning_module = LearningModule()

# # After a human reviews a draft:

# learning_module.incorporate_feedback(draft_response, edited_response_by_human, 'successful')

# # Periodically run:

# learning_module.retrain_models()


總體架構流程

資料擷取和監控不斷從各種來源收集資料。

處理後的資料輸入到危機偵測模組。

如果偵測到危機,其詳細資訊將被傳遞給情緒分析模組。

然後,危機詳情和情緒分數被發送到回應生成和推薦模組。

此模組會產生一份草稿回應並提出行動建議,然後提交給人類公關專業人員。

人類對所產生的反應和採取的行動的回饋被回饋到學習和適應模組,以提高未來的表現。

現實世界人工智慧代理的關鍵考慮因素:

資料隱私與安全:處理敏感資訊需要強而有力的安全措施。

人機互動:人工智慧應該協助,而不是取代。人類的監督對於準確性、細微差別和最終決策至關重要,尤其是在高風險的公關領域。

道德人工智慧:確保公平、避免回應偏見以及營運透明。

可擴展性:系統必須處理大量資料和請求。

整合:與現有通訊平台(電子郵件、社群媒體管理工具、內部儀表板)無縫整合。

訓練資料:獲取或產生用於危機偵測和情緒分析的高品質、標籤的資料集至關重要。對法學碩士 (LLM) 進行微調需要大量特定領域的文本。

運算資源:運行高階 NLP 模型和大型語言模型需要強大的運算能力。

此概念設計和偽代碼為建構用於危機公關和危機管理的AI代理提供了一個強大的框架。需要注意的是,實際實施將涉及大量的工程工作以及AI/ML、NLP和軟體開發方面的專業知識。


沒有留言:

張貼留言